AD-A188 923 VIENS FOR EVOLUT N_PROGRANNING Elmnonmns‘w /1
C”BIE-!ELLON UNIY PITTSBURGH PR SOFTHARE ENGINEERING
NST J R DEST R DEC 87 CMU/SEI-87-TR-43 ESD-TR 8?-200

UNCLASSIFIED F19628-85-C-

.

R e

e . -

T
R

10 ., ges !
e e = y
L el TR .
=== 2w . ‘ v
IV i - ¥
=25 1. }
== s e)

3
:“,
"
:

i N

o'o o
1,4°0.4 L) ‘
; %,t""\"’\’!‘;" 'l’ 'l

.a’!" ‘)

TR T A R R O N A R O O AN A OO OO e R T 2"y 8% 8% 4% 2% $'a'Ala 8% 2% 022 2% 2%a a2 2% ‘aYa "R’s 2% 8, al TR

.

Technical Report
CMU/SEL-87-TR-45
ESD-TR-87-208

bt -
- — Carnegie-Mellon University 5 ”2 O v R
- Sy

I

N —~——=— Software Engineering Institute

o Views for Evolution in
Programming Environments

John Nestor
//’ December 1987
DTIC
‘ , SLECTE

FEBO 8 1988

KR
> o o o

S ¢ ¢

. o o

e e

AD-A188 923

Arse wewe gD

s

iy e

R
N *‘."’f' .-\' .

'z::/:' INL
NN XA

1.41
'y

[\
b}

Y
(4
N
-N.n‘

P RTINS T L N U S A e st K
R A L T T e s N N e e e = P T L e

- -~
o

ERX] » ’ N ;! Y L &
AR RN OO A XY A‘-'t"‘t\‘\'.‘i'- n'.,‘\', DY -.I‘-.l".t"“'.».t.!.k"‘i‘-.l "l U W% xS

Technical Report
CMU/SEI-87-TR-45
ESD-TR-87-208
December 1987

Views for Evolution in Programming
Environments

John Nestor

Accesion tor

DTIC TAB
Unannocurced
Justhicaton |
BY e .
Distiibutio:f

Ayatas ity CoGes

]

NTiS CRA&I - N
0

0

Approved for public release.
Distribution unlimited.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

QNP IR0 e L L L
U 0 S M TR

AR A

) PO S

LT

T

A r A

-y,

o/ 2,

T IE TN AT T AT AT AT RY A XTIV NV ST sww

This technical report was prepared for the

SEl Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this repornt should not be construed as an official DoD

position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEl Joint Program Office

This work was sponsored by the U.S. Department of Defense.

This document is available through the Defense Technical Information Center. DTIC provides access 10 and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S.

Govemmment agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical
Information Center, Attn: FORA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also avsilable through the National Technical Information Services. For information on

ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Ry
Springfield, VA 22161,

l';'l!

’r

o

ot

o::'.o

X

‘

o

- . . .)

Views for Evolution in Programming O

Environments e

L 0]

John R. Nestor ‘;«. Y,

o

Software Engineering Institute, Carnegie Mellon University e

November 29, 1987 4

X}

.-v,’

Abstract N

s

T Programming environments have become a focal point for much of the work f

directed toward improving the practice of sofiware engineering. Such environments ,fl'

must provide mechanisms for recording and organizing the complex set of persistent ?A

technical and management data associated with all parts of the lifecycle of large o)

software systems. This paper focuses on one important aspect of such persistent T,

data: how to allow evolution when the existing information must be preserved without Py

change to maintain history. First, the role of history in programming environments Y 5
is discussed. Next, the additiona! demands of evolution are considered and shown

to lead to a set of problems. View mechanisms are suggested as a solution 1o these v
problems. A simple example involving file system directory structure is presented A,
to illustrate these problems. A simple view mechanism, called multidirectories, is g\,
introduced and shown to solve the illustrated problems. gg— Qe

This work was sponsored by the Department of Defense. The views and conclusions contained in -.‘q,':‘
this paper are those of the suthor and should not be interpreted as representing official policies, either =
expressed or implied, of the Software Engineering Institute, Camegie Mellon University, the Department '
of Defense, or the U.S. Govemment. '\‘.:

‘ ‘ > o ™ o O
OO RN R M N OO NI NI AN RIS AN R M A R N y mmm R TN " S

4 gt
A

]
-
4
1 Persistent Object Bases \‘
The demand for software is steadily increasing both in the number of systems being o
built and in the complexity of these systems. Our ability to produce these systems QA
has also been increasing in part due to an increasing number of qualified software 1
developers and in part due to the increased per-person productivity resulting from :ﬂ
improved technologies and methods. Unfortunately, demand for software has consis- ™
tently been growing faster than our ability to produce it. Software is often delivered K \.!'
late, costs much more than originally predicted, and fails to satisfactorily do the job | :.
for which it was built. The combination of these problems is what many have char- i
acterized as the software crisis and has led to increasing emphasis on the field of o
software engineering whose goals are directed at solving these problems. K
Modern software technologies allow software engineers to automate many of ,-j: :
the processes that previously were often implemented by inefficient manual or semi- :f’
automatic procedures. Such improvements increase our expectations, leading to larger M
software projects. Larger projects, in turn, require improved communications among]
managers, users, designers, and maintainers. These automation and communication - .,
needs place increasing demands upon the underlying hardware. In place of a sin- o,
gle batch or time sharing machine, increasing emphasis is being placed on use of :,.
workstations, distributed computation, and networks to integrate previously separate ,_-'
computer systems into a single vast communication and computational system. .
A programming environment is a set of hardware, software, and methods that D
assists software engineers with all aspects of software production. Programming
environments have become a focal point for much of the work directed toward im-)
proving the practice of software engineering. The management of persistent data Ny -
is increasingly becoming a central issue for such environments. Environments are ;{.
being called upon to be the repository of all information, both technical and manage- .-'.; '
rial, created throughout the lifecycle of software system from requirements though t _
deployment and continued enhancement. Each phase of the lifecycle adds new infor- [
' mation particular to that phase as well as information relating that new information ' '.
to previous information. All of the information is modified and extended as work o~
progresses. Not only is the current state of information needed but is often necessary w
to retrieve historical information as well. NS
Most programming environments now support persistent data by using a file]
system with one or more ad-hoc databases. Most new environment efforts are moving @
toward a more object-oriented approach that is a synthesis of ideas from file systems ,__
and databases. Such next generation systems are referred to as persistent object :C:>)
bases and consist of a set of persistent objects that capture both file-like concepts, 4
such as source and executable programs, and database concepts, such as attributes and eyt

relations. These new systems will differ in several important ways from traditional
database systems [1,2).

[v
-

o

ol

o Data and Operations. While traditional database systems provide support for
large sets of small fixed size objects of a limited number of types, persistent

Py
ZZL

Nty ; . n WA WA O T R T A e A e Pl P e o P
N N AN SRS OO D O W T TR D T R T AN i T DR Kb L AT AN 4N IR A S WA f iy Do W

:::.
N
N
o
LX)
N
?.::
object bases will need 1o support large variable sized objects of many types ""
with complex interrelationships. While simple operations such as join and (3
projection are common in traditional databases, persistent object bases require :.l:
more complex operations such as transitive closure. Although persistent object o
bases can be built on top of existing databases, the differences in data and o
operations result in an unacceptable loss of performance. -3
W g
o Distribution. Most current database systems run entirely on a single machine. 3'5:,,
Persistent object bases will need to run on large heterogeneous networks that in- 0
clude many workstations and special server nodes all integrated into a coherent X
whole. ¥
‘ o Transactions. While database systems typically process very short transac- . :
r tions lasting less than a second each, persistent object bases must support long vy
transactions, such as modifying a source file, that can last hours or even days. N
o Abstraction. Most database systems have only a small number of built-in types W
that are structurally composed by a central database administrator to form an B
overall schema for the entire database. In a persistent object base, full abstract s,
data types must be supported and type definition ability must be extended to <19
both tool builders and end users. Z:;
o History. A persistent object base must be be able to support historical versions s
of individual objects and of complex configurations. It must be possible to go 2
back to an earlier release of a software system and re-create it in exactly the -,
same way in which it was originally created. .::;
, Although the focus here is on the needs of programming environments, similar .
problems arise in other applications that require a large number of variable sized S
objects kept over a long period of time and shared by large groups of people. Both . ':
computer aided design and the document filing aspects of office automation have °
, these characteristics. Solutions identified by research in software environments will X
also be applicable to these and other similar application areas. :‘i
] This paper focuses on one important aspect of persistent object bases: how to ’
: allow evolution when the existing information must be preserved without change to t{:
maintain history. First, the role of history in programming environments is discussed. =3

Next, the additional demands of evolution are considered and shown to lead to a set
of problems. View mechanisms are suggested as a solution to these problems. A
' simple example involving file system directory structure is presented w illustrate '.;_
these problems. A simple view mechanism, called multidirectories, is introduced and ;
¥

. shown to solve the illustrated problems. :
f))
2 History j\
. i
Two related history concepts needed in programming environments are introduced ::
here: source versions and re-creation. R
2 .
N
1: t
'~)

e~ p® R -5 - -.-...'-'u"~
o A KA MR L TPt N TN

0

PO MR M UM ()
AT Ty ‘l' gt }\' ‘5'.“‘.. ‘. ,'?.5“1\‘ “")“,‘v.&‘;‘ J.‘.l",\o' ANt

g
. S

"s'.‘ {

Every time a source file is edited, logically a new version is created, so that
over time a linear sequence of versions is created. When altematives occur, such
as when a bug is fixed in an old release while work continues on the next release,
the sequence can fork; when alternatives come together separate sequences can join.
Abstractly, a directed acyclic version graph is formed. Not all points in the version

’ graph are equally important. In practice, users do not preserve versions below some
minimum level of granularity. The finest granularity is a version for every edit. A
N coarse granularity is at versions that are major releases. Intermediate granularities
" are frequently defined to aid the management of a development projecL The concept
of versions can be usefully extended to multiple related source files which may be
considered to be progressing in paralle! along a version graph.
) Re-creation is the ability to go back to an old version of a software product and
repeat all of the steps that were involved in manufacturing it [3]. Manufacturing takes
primitives such as source modules and produces products such as executable programs
' by performing a set of manufacturing steps. All inputs to each manufacturing step,
! including the program used to perform the step must cither be a primitive or the result
of some previous step. The partially ordered set of manufacturing steps is captured
by a derivation graph. Re-creation of a product is possible if its derivation graph and
set of primitive components are known and they have not been changed since the
K product was originally created.
Re-creation is important because it captures key information about a product. If
! a product is re-creatable, then the relation between that executable product and the
primitive source modules from which it was built will be known. Re-creation also
makes it possible to produce a variant of some product.

3 Evolution

The way in which an object is viewed during the software development process will
1 evolve over time. Even though its value may remain fixed, other kinds of information
‘ will be added or modified. An imponant trend in programming environments is to
provide information not just about the software product but also about the software

B process. Process activities such as analysis and testing, reuse of a module in multiple
products, and iterative development strategies all contribute substantial evolutionary
information about program objects.

In environments based on traditional file systems, evolution is accomplished by

) moving, copying, editing, and deleting of information. This approach is not appro-

priate for next generation environments for two reasons:

v e History. It is very difficult to record a complete version history and o ensure
re-Creation when the information involved has been moved or extended.

o ldentity. When multiple copies of some object are created, the logical equiv-
i alence of the two copics is lost.

ClCn Ty 7
LIS U o]

g

g) . o« MRS O EA TS TSR IO I Y R I OV L I AU R S
ORI O On D O DA QU U TR UM e AT 0TS 3 S I A YR VR YA DA R P L

An altemate approach is considered here. The basic idea is to keep history
information fixed and thus ensure re-creation, but o allow the way in which that
information is viewed 0 evolve. A view mechanism is software that allows a map
to be imposed between the user and the data, This map provides for various kinds
of evolution:

e Additions. During evolution, new properties are added to objects. If the
manufacturing process can be affected by this addition of object properties,
then re-creation may not be possible. This problem is caused by treating the
properties of an object as part of the object. In file systems, such properties
include the fully qualified name of the file and attributes such as creation date.
Most database systems have attribute mechanism that group attributes with
objects. A solution is to store new attributes in some place away from the
object to which they apply and then use a view mechanism to make it 1ook as
thought they are part of the object. In the same way that there can be versions
of individual objects, there can also be versions of the system views which
cach view representing some point in time.

Restrictions. As the amount of information in an environment increases, a user
can easily get lost in the overall complexity. Views can be used to solve this
problem by giving each class of user, or even each individual user, a personal
view into the small subset of the total information that is relevant to the task
at hand.

One general purpose approach to views is to allow arbitrary functions that map
between the existing information and the way in which that information is viewed
by the user. Although such an approach provides full generality, such generality is
often only obtained with a considerable cost in lost performance. Special case view
mechanisms are of interest when they provide for an important set of real needs
without sacrificing performance. By combining such special purpose mechanisms
together under a general view abstraction it may be possible to have the full power
and generality combined with high performance for most common cases where it is
used. One such special case view mechanism is presented here. The next subsection
introduces a set of problems with directories as found in common file systems. The
following subsection then shows how those problems can be solved by a simple
special case view mechanism.

4 Directories

Most file systems are organized as a tree of files, each of which is either a directory
or an ordinary file. Within the tree, directories appear as inner nodes and files appear
as leaf nodes. The root of the tree is a unique directory from which all directories
and files can be reached. Each directory is a mapping between file names and the
files themselves. Each file has a unique path name given by the path from the root

’ ; \ ; . W < - S Co N -
BRI NI URMUICICHO MR Ky Mot X Ko NOCH M Y T M i B W M .'l M & i :‘n AR TN W " AR08

directory to the file. For example, the path name /usr/bin/man is for a file named
man that is reached from the root directory via first the usr directory, then via the
bin directory.

One problem with a tree structured file system is that the user is forced to represent
a system in a way that does not reflect the structure of the data in the system. A
related problem is that as a system evolves the user periodically must do major
reorganizations of the data within the file system. These reorganizations are needed
because the preexisting hierarchical structure increasingly deviates from the actual
logical relationships. Not only is considerable user effort required to perform the
reorganizations, but these reorganizations compromise re-creation.

Consider a system being built as part of some project called Q. A directory is
built for the project.

/projects/Q

Initially, all files for the project are placed in that directory. Soon the number of files
in that directory has grown to where more structure is needed. Suppose that both
documentation files and program files exist. To provide more structure, two new
directories are created.

/projects/Q/documentation
/projects/Q/program

All of the files are moved into one or the other of these two directories. Not only
is there the extra work involved in moving the files into the two new subdirectories,
but all references to @ must now be changed to refer to one or the other or both of
the two new subdirectories.

Consider next that it is time to release the Q system to users. Users need the Q
executable file and the Q user manual, but not the Q source code or the Q internal
documentation. These files are a subset of the files in the two subdirectories. Since
users should not have to know about the substructure of the Q project directories
and be confused by all those other files that don’t matter to them, a new directory is
created to hold copies of the files that the users will need.

/release/Q

Moving files was bad enough, but in this case there are now actually two copies of
the same files.

Next, consider that it is time (o produce a new version of the Q system. If the
previous version of Q is to be preserved, the directories must be split.

N R R

/projects/Q/documentation/Vl
/projects/Q/documentation/Vv2
/projects/Q/program/vl
/projects/Q/program/vV2
/release/Q/V1

/release/Q/V2

Here all the old files are moved into the v1 directories. The v2 directories will be
used for the new version of the system. A simple way to do this is to start by copying
all the v1 files into v2. Work on the new version then can be done by changing the
v2 file while leaving the v1 files intact.

The directory tree shown above is only one of several possible ways of organizing
the information. The following are alternative ways of structuring the tree:

[
L J

=

A rA

.' 'I ~

I‘:’

/projects/Q/V1/documentation
/projects/Q/V1/program
/projects/Q/V2/documentation
/projects/Q/V2/program
/release/Q/V1

/release/Q/V2

: vn?",
“

X
o ks

v .

el

/V1/projects/Q/documentation
/V1/projects/Q/program
/V1l/release/Q
/V2/projects/Q/documentation
/V2/projects/Q/program
/V2/release/Q

?
AR NS

L d

“ y?

o
n Y

’

2 “"T‘;

The presence of several equally valid forms indicates each form contains some infor-
mation that is a property of the representation of the form that has little to do with
the overall logical structure of the information.

AR

l..
Py

Py

oy

4

§ Multidirectories

T
3

14

LY

r

A simple view mechanism responds to the problems illustrated in the previous section.
The mechanism is based on an extended kind of directory, a multidirectory, in which
cach name can map to a set of objects. One use of a multidirectory is to divide a set of
objects into a set of partitions, each of which represents some equivalence class. This
can be further generalized by letting the named subsets overlap and thus produce a
cover rather than a partition. Several multidirectories can be used to provide different
ornthogonal covers of a single set.

For example, suppose the Q system in the previous section included all of the
following files:

3 by P P g 3 v
AL o

I

L0

o
»_ ¥
ra

R

b v 4
(A

v 3 ' (» NSLIVIRRISTSIRY
RRSIUOUIOCIOCHIAN TR S Nl SRR AT S BAT BN e T ol s ot (N

9,
|4
o
3
- .‘
B
3
[:J
Q.h.1 Q.h.2 5,
i0 x.c.1 x.c.2 :f
s y.c.l Ny
‘ Q.exe.l Q.exe.2 g
Q.mss.1 Q.mss.2
. Q.doc.1 Q.doc.2 N
N -
We can have several multidirectories of these files.)
. - . . . -
,;- o Name. This partition groups all versions of the same object together under its -
name. 2o
Q.h -> {0.h.1,Q.h.2} <
bf x.c -> {x.c.1l,x.c.2} Y
K) y.c -> {y.c.1)]
Q.exe -> {Q.exe.l,Q.exe.2} K
n Q.mss -> {Q.mss.1,Q.mss.2} .
i Q.doc -> {Q.doc.1,Q.doc.2} »
",
¢ Ky
D "
! o Configuration. This cover groups the files into configurations corresponding o
to two versions of the system. N
.

Vi -> {Q.h.1l,x.c.1l,y.c.1,Q.exe.l, N
Q.mss.1,Q.doc.1} LS
V2 -> {Q.h.2,x.c.2,y.c.1,0.exe.2, Q
Q.mss.2,Q.doc.2} ‘ot
L .\' :
i
By
, o Origin. This partition distinguishes user written files from derived files. ¥
¢ -
User -> {Q.h.1,0.h.2,x.c.1,x.c.2,y.c.1, }.
! Q.mss.1,Q.mss.2) gi
: Derived -> {Q.exe.l,Q.exe.2,Q.doc.1,Q.doc.2} -
4%y 13]
Y w
4] o Kind. This partition distinguishes program files from documentation files. -:
»
[
j Program -> {0.h.1,Q.h.2,x.c.1,x.c.2,y.c.1, Fy
4 Q.exe.l,Q0.exe.2}
Documentation -> {Q.mss.1,Q.mss.2, o
Q.doc.1,Q.doc.2} o
.‘t .'!
g 4
.
o Ly
. 7 r’
R

~e “w ' (SRRt T A y D e I P] NU“‘ *-F"'*
)(’ 0"'\'!"0?"lb.'!‘ﬂ.“"..n!.ﬂ,‘..,’J.», l.,.l'. A‘S.s..‘l‘. WL LAY, W, 0'-‘.‘-) A ASAGS .q CAGS t.o‘l 2%) . ‘u. v "“v ¥

e Access. This partition distinguishes files released to users from files that are
only available to developers.

Internal -> {Q.h.1,0.h.2,x.c.1,x.c.2,y.c.1,
Q.mss.1,0.mss.2}
Release -> {Q.exe.l,Q.exe.2,0.doc.1,Q.doc.2}

These multidirectories can be composed in order to yield many different views of the

system. The basic composition operator enables a multidirectory 10 be viewed via
some set. Thus, Name via Configuration.V2 is:

&

.h {Q.h.2}
.C {x.c.2}
.c {y.c.1l}
.exe {Q.exe.2}
.mss {Q.mss.2}
.doc {Q.doc.2}

OO OK X O
ey
A AL AR AN

As a more complex example, Name via Origin.User via Kind.Documentation
is:

1T W By Ny
*

N

R NS

Q.mss -> {Q.mss.1,Q.mss.2}

An altemate way of thinking about a multidirectory is that it gives the value of
some attribute of a set of files. For example, the Kind multidirectory, provides the
following values for the Kind attribute:

e
5-,(,:'v

"Program"
"Program"
"Program”
"Program"
"Program"
"Program"
"Program"
"Documentation”
"Documentation®
"Documentation"
"Documentation™

/‘;'_'-":' I'd

,’;'A'

$ F 8 3
St S ’,
s b N Y

OOOOOOK*XOP

Observe that since the attributes are not stored with the object to which they apply,
they can be added without modifying the object or compromising re-creation.
Multidirectories provide solutions to the evolutionary problems of normal file

system directories: I

e Copies. When a single file is used in several different ways, instead of creating N
multiple copies of the file, multidirectories can be used to create multiple views
of the file. For example, instead of copying files from the /projects/Q oy
directory to the /release/Q directory, the Access multidirectory was added 'o‘
to permit the views Name and Name via Access.release.

DN
e Evolution. Multidirectories permit information to evolve without the need "::f
to modify or move existing files. For example, instead of having to split .
/projects/Q into ¢
L
Ny
/projects/Q/documentation o
/projects/Q/program :.)-
oy
all that was needed was to add the Kind multidirectory. No files were copied "
or modified, and therefore, re-creation was not compromised. ¥,
e Alternate Representations. Multidirectories avoid the problem of having to N
select some specific representation out of a set of equally valid alternatives. Y
For example, the directory distinction between f’ .

/projects/Q/documentation/V1)
/projects/Q/V1/documentation :E

/V1/projects/Q/documentation 't
: -
disappears when multidirectories are used. '_‘E
In summary, multidirectories allow users to organize their information in a more Y
natural way than is possible in a conventional file system. Multidirectories allow - N
information to evolve without forcing changes that could make re-creation difficult. ",
Finally, multidirectories are a simple view mechanism that should have quite a effi- :'{"_
cient implementation. o
-
6 Conclusions v
i
Existing programming environments have the problem that they can not simulta- :;
neously guarantee re-creation, permit evolution, and avoid multiple copies. View W
mechanisms solve this problem by allowing historical information to remain fixed :,
thus supporting re-creation but allowing the way that we view that data to evolve. v J:
Such view mechanisms will be a key component of the persistent object bases on X ‘:
which future programming environments will be based. :\J
R
L% ¢
9 "

L}

o

\‘

") oy T O L O R T LRt
B "\‘.'».' ‘\','a‘-’s\'ﬂ-‘n"y'l‘..i' U] 'I‘f‘l"'ﬂ!‘,“.\‘-.t‘.‘l\'v'Q'r a l‘."'a‘l‘- I’!‘\l!'l‘- MWK N N "‘i‘- MM NN) o it O A

2 . 9 \ 4 3 \ U \ PR\ APy L A [y \ . .;'
a
S
L
»{
',
|}

2
7 References e
L 1. John R. Nestor, “Toward a Persistent Object Base™, International Workshop 2N
on Programming Environments, Lecture Notes in Computer Science, Number L4
244, Springer-Verlag, 1986. 3
: 2. Philip A. Bemstein, “Database System Support for Software Engineering, An oy
Extended Abstract”, 9th Intemnational Conference on Software Engineering, by
IEEE Computer Society Press, 1987. 4 4

A g

3. Ellen Borison, “A Model of Software Manufacture”, International Workshop

on Programming Environments, Lecture Notes in Computer Science, Number v
N - 244, Springer-Verlag, 1986. \.i
1 '..|
'. N
A
3
hA .!
N t
[’ Q'
he!
\]
N
')
X o
: A
o
/ X
oY

) -~

)

10

»
N
54 t 7w N
L)

§ ol Wt

-'l |~ ‘

A § A i W R PP Py
AEERIOOROUOLOUOLN A, Tn UM, DRTCSHIONE NS DN NN AN

"y 2) Ly o W R
RSASR RN AN fan’ AT,

a)
(]
_UNLIMITED, INCLASSIFIED ¢/ / 0O G [
SECURITY CLASSIFICATION OF THIS PAGE /] 4/ 7 L .
gs REPORT DOCUMENTATION PAGE
te. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE
! 2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE ;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED .
N/A ‘
% 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-87-TR-45 ESD-TR-87-208
@ 6. NAME OF PERFORMING ORGANIZATION [6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
OFTWARE ENGINEERIN N SEL SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City, State end ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
§E CARNEGIE MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731
g 8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER “
ORGANIZATION (If applicable)
" SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
L& 8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
. | SOFTWARE ENGINEERING INSTITUTE JPO ELEMENT NO. NO- No- No-
g; BURGH, PA 15213 N/A N/A N/A
1. TATLE (Include Security Classification)
VIEWS FOR EVOLUTION IN PROGRAMMING ENVIRONMENTS
12. PERSONAL AUTHOR(S)
E JOHN R. NESTOR
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
FINAL FROM 10 DECEMBER 87 12
-"‘-: 16. SUPPLEMENTARY NOTATION
o
12, COSATI CODES _]w. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
ag FIELD GROUP SUB. GR. _IPROGRAMMING ENVIRONMENTS, PERSISTENT DATA, VIEW MECHANISM
) MULTIDIRECTORY
1

19. ABSTRACLT (Contlinue on reverse if necessary and identify by block number)

PROGRAMMING ENVIRONMENTS HAVE BECOME A FOCAL POINT FOR MUCH OF THE WORK DIRECTED TOWARD
IMPROVING THE PRACTICE OF SOFTWARE ENGINEERING. SUCH ENVIRONMENTS MUST PROVIDE MECHANISMS
FOR RECORDING AND ORGANIZING THE COMPLEX SET OF PERSISTENT TECHNICAL AND MANAGEMENT

DATA ASSOCIATED WITH ALL PARTS OF THE LIFECYCLE OF LARGE SOFTWARE SYSTEMS. THIS

PAPER FOCUSES ON ONE IMPORTANT ASPECT OF SUCH PERSISTENT DATA: HOW TO ALLOW EVOLUTION
WHEN THE EXISTING INFORMAITON MUST BE PRESERVED WITHOUT CHANGE TO MAINTAIN HISTORY.

FIRST, THE ROLE OF HISTORY IN PROGRAMMING ENVIRONMENTS IS DISCUSSED. NEXT, THE ADDITIONAL
DEMANDS OF EVOLUTION ARE CONSIDERED AND SHOWN TO LEAD TO A SET OF PROBLEMS. VIEW
MECHANISMS ARE SUGGESTED AS A SOLUTION TO THESE PROBLEMS. A SIMPLE EXAMPLE INVOLVING
FILE SYSTEM DIRECTORY STRUCTURE IS PRESENTED TO ILLUSTRATE THESE PROBLEMS. A SIMPLE

VIEW MECHANISM, CALLED MULTIDIRECTORIES, IS INTRODUCED AND SHOWN TO SOLVE THE ILLUSTRATED

b

2y, B o&d

PROBLEMS.

ﬁ 20, OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLassiFieo/untimiteo XX same as aer. O otic usens X UNCLASSIFIED, UNLIMITED
g 22s. NAME OF RESPGNSIBLE INDIVIDUAL 226, TELEPHONE NUMBER 22¢c. OF FICE SYMBOL
(Include Area Cod
KARL SHINGLER (412) 268-7630 SEI JPO
O
g DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

~ " ._mexv-{\}\‘\m .r‘ Tat o

IR ARSI DO DXTH
- A M L .

